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changes should be made in the sense of irrigation concerning the number and length of 
irrigation cycles.  

 
FINAL REPORT  
  
  
Culture Lettuce 
Type of greenhouse Tunnel 
Tunnel width, m 10 
Tunnel lenght, m 20 
Orientation East-west 
Number of plants 3000-5000 
Time of planting (month) 12. 
Production technology In the soil 
Ventilation system Natural ventilation 
Capacity, m3/min  
Fan capacity, m3/min  
Number of fans in greenhouse  
Heat losess, kW 2541.82 
Type of heating system Central heating 
Type of irrigation system Micro-irigation, irigation tape 
Total amount of water per day, l 1531.91 
Total amount of water per cycle, l 1531.91 
Number of cycles 1 
Duration of cycle, h 0,5 
Duration of irrigation, h 0,5 
Pump, kW 0.34 
Total greenhouse surfacewith working area, m2 671.96 
Surface of working area, m2 10 
Working area needs, m2 30 
Working area to built, m2 20 

 
Fig. 8 A final report of the model 

 
During the algorithm implementation Excel program was found very difficult for using 

as a programming program. Based on the algorithm some other program must be use in 
order to adequately follow all parts of the algorithm. One of these can be Quick Basic or 
something similar.  

CONCLUSIONS 

Greenhouse production is a very complex production system that needs to be maintained 
well with great attention. Decision about starting this kind of business involves great 
number variables that need to be analyzed.  



 
 

A. Dimitrijević, R. Miodragović, Z. Mileusnić, M. Urošević, O. Ponjičan 
 
 

 
 

576 

In this paper a simple model that is meant to be used by the ordinary farmers is 
presented. The model is still in the developing stage and lot of improvements are needed 
but the possibilities of its use are wide. The aim was to closer the greenhouse production 
system to a farmer by letting him to know on what parameters he can influence and how 
changing the one parameter can influence the establishment of whole system. Proposed 
algorithm was realized in the MS Excel 2000 Program but during the realization some 
difficulties occurred that indicate that some other program, more suitable for programming 
should be used.  
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deploys intensive spraying with water which results in reduction of surface quality since 
nutrients are washed into the ground and the soil structure deteriorates. For this reason, in 
this paper we seek ways to protect plants by reducing the intensity of spraying. 

MATERIALS AND METHODS 

It has been explore the heat balance of the rhizome of strawberry that has no leaves. In 
the pre-frost period, this type of plant displays the worst case scenario. Its temperature 
drops fastest at night-frost because lack of leaves means heat exchange will be more rapid 
than in the case of leaves. 

To analyse this situation, we create a model that describes the balance of heat exchange 
for a plant with no leaves. The model is based on the laws of heat transfer—the 
relationships that characterize wet air—and the computations are done using Scicoslab. The 
main equation we use is as follows, 

 
 ݀ܳ ൌ ሺܴ௅௡ܣ ൅ ܴௌ௡ ൅ ௖ܲ௡௩ ൅ ௖ܲ௡ௗ ൅ ௅ܲሻ݀߬,  (1) 

 
where  

A is the top surface area of the rhizome, m2,  
dQ is heat stored in rhizome (left rhizome) during time period dτ, J,  
RLn is heat flux density in the long wave infrared spectrum in time period dτ from the top 

surface of rhizome, W·m−2,  
RSn is the solar energy absorbed by the top surface of the rhizome in time period 

dτ, W·m−2,  
Rcnv is the heat flux density between rhizomes and air, transmitted through air by 

convection, in time period dτ, W·m−2,  
Rcnd is the heat flux density between rhizomes and ground, transmitted by conduction, in 

time period dτ, W·m−2,  
PL is heat flux density due to thermal condensation of moisture in time period dτ, W·m−2. 
RLn is given by [1], 
 

 ܴ௅௡ ൌ െ݂ߝ଴ܶߪସ, (2) 
 

where 
f = (1.35RSd/RS0) − 0.35, is a function that accounts for daytime cloudiness. The 

minimum value f = 0.055 corresponds to completely overcast skies (i. e. RSd/RS0 = 0.3), and 
the maximum value f= 1.0 for completely clear skies.  

RSd is measured total solar radiation, W·m−2,  
RS0 is clear skies solar radiation, W·m−2,  
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ε0 is apparent net emissivity between the surface and the skies, estimated using the 
expression 

 

଴ߝ  ൌ 0.34 െ 0.139ඥ݁ௗ,  (3) 
 

where 
ed is actual vapour pressure (kPa) measured in a standard weather shelter,  
σ = 5.67 · 10−8is Stefan–Boltzmann constant, W·m−2·K−4,  
T is the absolute temperature of rhizome, K.  
RSn is given by [1], 
 

 ܴௌ௡ ൌ ሺ1 െ  ሻܴௌௗ, (4)ߙ
 

where α is the fraction of short wave radiation that is radiated from a surface called albedo. 
 
 

 
 

Figure 1 Measured values of wind speed, density of escaping infrared flux (by 
pyrgeometer), solar flux density (by pyranometer) and air temperature (values on the right 

axes) 
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The radiation heat exchange involves both the solar radiation that heats the surface of the 
rhizome and the heat flux that leaves the rhizome. It has been argued in [1] that “depending 
on the temperature and humidity, RLn on a radiation frost night typically varies between −73 
and −95 W·m−2. When skies are completely overcast, RLn depends on the cloud base 
temperature; but RLn = −10 W·m−2 is expected for low, stratus-type clouds. Therefore, 
depending on cloud cover, −95W·m−2<RLn< −10 W·m−2, with a typical value around −80 
W·m−2 for a clear frost night”. 

The values we measured for the density of escaping infrared flux (see Fig. 1) stayed in 
the limits described above.  

Convective heat exchange occurs between air and the top surface of the rhizome. The 
temperature of rhizome rises above the air temperature during daytime due to absorption of 
solar radiation. During frost, the temperature of the rhizome drops below the ambient 
temperature. 

Pcnv is given by the expression, 
 

 ௖ܲ௡௩ ൌ  (5)   ,ܶ߂ܣ݄
 

where 
Pcnv is heat flow of input or lost heat flow, J·s-1 =W, 
H is heat transfer coefficient, W·m-2·K-1, 
A is surface area of heat transfer, m2, 
∆T is the difference in temperature between the solid surface and the surrounding fluid 

area, K. 
We determine the convective heat transfer coefficient from the formulas for the Nusselt 

number in case of free convection from horizontal plates [2]. 
For the top surface of a hot object in a colder environment or bottom surface of a cold 

object in a hotter environment [2, p. 496], 
 

 Nu௅ ൌ 0.54Ra௅଴.ଶହ  if 10ସ ൑  Ra௅ ൑ 10଻ (6) 
 

 Nu௅ ൌ 0.15Ra௅଴.ଷଷ  if 10଻ ൑  Ra௅ ൑ 10ଵଵ (7) 
 
For the bottom surface of a hot object in a colder environment or top surface of a cold 

object in a hotter environment [2, p. 496] 
 

 Nu௅ ൌ 0.27Ra௅଴.ଶହ  if 10ହ ൑  Ra௅ ൑ 10ଵ଴ (8) 
 

where Ra is Rayleigh number, which describes the relationship between buoyancy and 
viscosity within a fluid. 
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 Ra ൌ GrPr ൌ ௚ఉఔఈ ሺ ௦ܶ െ ஶܶሻݔଷ (9) 
 

where 
g = 9.81 is gravitational acceleration, m·s-2, ߚ ൌ ଵ்ಮ, volume expansion coefficient, K-1; 

ν is kinematic viscosity, m2·s-1, ν = μ/ρ, with μ dynamics viscosity, Pa·s, for air at 291 K 
18.27 μPa·s, at 273 K 17.4 μPa·s, ρ is fluid density, kg·m-3, 
α is thermal diffusivity, m2·s-1 (thermal diffusivity of air at 1 atm, 300K is 2.2160·10-5), 
Ts is surface temperature (temperature of the wall),  
T∞ is quiescent temperature (fluid temperature far from the surface of the object),  
x is characteristic length (in this case, the distance from the leading edge). 
Thermal heat transfer occurs inside the rhizome and between the rhizome and the 

ground. For many simple applications, Fourier’s law is used in its one-dimensional form. In 
the x-direction, 

 

௫ݍ  ൌ െ݇ ୢ்ୢ௫ ,  (10) 
 

where 
k is conductivity of material, W·m-1·K-1,  
dT is the temperature difference between the ends. 
The heat flow rate for a homogeneous material with 1D geometry with constant 

temperature distribution between two endpoints is given by 
 

 ௱ொ௱் ൌ െ݇ܣ ௱்௱௫ , W (11) 
 

where 
A is the cross-sectional surface area, m2,  
∆T is the temperature difference between the endpoints, K,  
∆x is the distance between the endpoints, m. 
At frost, the surface temperature of the rhizome drops below air temperature because of 

radiative heat exchange. Moisture condensates on the surface of rhizome if the surface 
temperature of rhizome falls below the dew point temperature. The heat flux density W·m-2 
transmitted to the surface of rhizome related to condensation of moisture from the air, can 
be determined by the latent heat transfer formulas. 
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The dew-point temperature is given by [3], 
 

 ௗܶ ൌ ଶସଷ.ହ ୪୬ ሺ௘ ଺.ଵଵଶሻ⁄ଵ଻.଺଻ି୪୬ ሺ௘ ଺.ଵଵଶሻ⁄ , ºC (12) 
 

where e is the actual water vapour pressure, in units of mbar. The e may be calculated using 
 

 ݁ ൌ 0.01 · ܪܴ · ݁௦ , (13) 
 
where 

RH is relative humidity of air, %,  
eS is saturated vapour pressure, mbar or hPa. 
eS can be calculated using expression 
 

 ݁௦ ൌ 6.112 · exp ቀ ଵ଻.଺଻·்்ାଶସଷ.ହቁ, mbar (14) 
 
where 

T is temperature of air, °C.  
The latent heat of condensation of water Lwater in the temperature range from40 °C to 40 

°C is approximated by the following empirical cubic function [4], 
 

 Lwater(t) = − 0.0000614342t3 + 0.00158927t2 − 2.36418t + 2500.79, kJ·kg-1 (15) 
 

with a determination coefficient R2 = 0.999988, where t is in °C. 
We have used formulas given above to create a model that simulates heat exchange 

processes for the rhizome of a strawberry in an open field. The rhizome is approximated by 
a cylinder of 3 cm with the thermal parameters of a strawberry plant. The top of the 
cylinder is 8 mm above the ground and 40 mm underground. The top 8 mm is divided into 
4 slices of equal length, each 2 mm. The underground part is divided into two slices—the 
upper part is 6 mm and the lower one is 34 mm. The most critical point is about 3 mm 
below the upper surface, in the second slice. This is where the growth buds are located; 
they are sensitive to low temperatures. The model allows to examine the timeline of the 
temperature change in every part of the rhizome depending on the dynamics of solar 
radiation, density of escaping infrared flux and the presence of the frost layer. 

RESULTS AND DISCUSSION  

The model simulates conditions that are extremely difficult for the plants: clear skies at 
daytime and the intensity of solar radiation at noon up to 550 W/m2, and then clear skies at 
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relative humidity of air is as high as possible so hoarfrost can occur already at the 
temperature of –0.5 °C. It is not advisable to sprinkle too much since this causes formation 
of ice instead of hoarfrost; an ice layer does not protect the plant against the cold without 
water sprinkling. 
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INTRODUCTION 

During the post harvesting operational chain, from sorting – packaging, to transportation 
and manipulation, in order to prepare the fruits for the market and/or storage of the fresh 
fruits, the apples suffer under varied mechanical forces, the most frequent one being the 
impact For agriculture products the impact is defined for contact velocity higher than 25 
cm/s, [1,3], while for the activity process of mechanical systems the contact velocity is 
usually higher than 30 cm/s. As a stress effect, the fruits get damaged. The highest fruits 
losses during storing period, aprox. 10 – 12 % are due to mechanical damages during 
sorting – packaging, manipulation, transportation, handling etc., [1,2]. Damages are 
highlighted by concussions followed by the pulp’s change of color in brown or cracks, 
[1,3,13], and they are caused when the tensions are higher than the elastic limit of the fruit’s 
pulp. 

The damage degree depends on the variety of the fruits and the ripeness degree, on the 
geometrical shape and the development factors registered in the orchard, on the complexity 
and the constructional and functional parameters of the technical system, on the type and 
the work regime, on the time passed between harvesting and processing, [18]. 

The evaluation of different fruits varieties reaction to impact, especially apples, has 
reached a worldwide interest, [6,9,10,12,15,17,18,19]. 

Simulations and experiments related to the behavior of the fruits during impact has 
special attention, research related, [5,7,8], in order to correlate the damage level to the 
causing impact force level and to create mathematical models able to predict the damaged 
caused by impact. 

In recent studies the issue of the damage of the fruits during impact involves elements 
more and more complex as probable characteristics of the damage correlated to different 
natural and circumstantial factors describing the process, [18]. 

The concept of parameter of susceptibility to damage during impact has been developed 
while it is considered that the damage level will not be higher than a certain permitted value 
(in reality 10%, [18]), while considering the natural variability of the influence factors, this 
index is defined by kinetic energy. 

Also experimental research based on the fruit’s reaction to impact in order to 
appropriately correlate it with the solidity (consistence) of the structure (tissues) directly 
linked to the ripeness degree, were used in the fruits sorting process, [4,5,10]. In this matter 
the applications [4,10] point out that the indicator which best sorts out the different degrees 
of ripeness correlated with the texture changes, is defined by ctFC max=  where Fmax is the 
maximum force of impact, tc– the time between the beginning of the impact until the Fmax 
(time to peak) is reached.  

The goals of this study have been a) developing a mathematical model for the simulation 
of the impact between apples, considered bodies with a linear viscoelastic flow, on plane 
fixed and rigid surfaces, in order to evaluate the maximum of the forces involved in impact 
(the main characteristic of the impact causing the damages) and marking the force – time 
curve during impact; b) experimenting the impact at 4 initial velocities for 3 varieties of 
local apples: Jonathan, Golden Delicious and Idared, in order to calculate the maximum 
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value of the impact force; c) testing and comparing, through experiments, the estimated 
values and the measured values for the main impact parameter (maximum force). Knowing 
these curves, the characteristics of the impact can be obtained and used to evaluate the level 
of the damage upon apples and/or the functional and constructional parameters of different 
mechanical systems used in the transportation-selection-packaging operational chain used 
to process the fruits.  

In many research studies, apples have been considered homogeneous and isotropic 
materials, [4], and recent research take into account the inhomogeneous and anisotropic 
characteristics in the apple’s parenchymatous tissue, [7,8] in order to obtain more exact 
information. 

THEORETICAL ELEMENTS 

In relatively recent studies the impact of the fruits is approached considering their 
unidimensional viscoelastic behavior, using either the Maxwell model [6], or, the Kelvin-
Voight model where the simulation of the impact is closer to the real situations, [11, 13]. A 
more complex physical model of the impact has been developed by the authors [20], upon 
the analysis of the force- strain curve for a viscoelastic material compressed with a constant 
velocity, derived from the Kelvin-Voight model, fig.1. 

Following this curve, the OA segment represents the elastic behavior, AB is the segment 
where, along with the elastic behavior we can observe the viscous damping due to the 
viscous component having as result a viscoelastic behavior. 

 

 
 

Fig. 1 The curve force - ideal strain for a viscoelastic material solicited to compression and 
constant velocity, [15] 

 
On the AB segment of the curve force – strain can be observed multiplying damage upon 

cells spreading through the material, phenomenon assimilated to the plastic behavior 
observed at strains bigger than the ones corresponding to the point B bioyield point on the 
curve. 

Based on this concept and a suggestion in [16] we can create the equivalent chart 
(Kelvin – Voight model) for the impact of viscoelastic bodies with rigid plane surface by 
introducing a plastic strain element. This chart can be seen in fig. 2 where: Fa – elastic 
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Terms in eq. (3) can be expressed by the relations, [4, 5]: 
 

 2
3

)( δδ KFa =  (4) 
 

 δβδδδ 2
3

),( =dF  (5) 
 

where K – contact rigidity for impact. 
In equation (5) the coefficient β is dumping hysteresis factor which can be expressed in a 

new way in the equations [4, 5]: 
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where: k is the impact’s restitution coefficient, given by the equation  

 
 iVk α−= 1  (7) 

 
Vi – the velocity at the beginning of the impact. 

With the relations (4), (5), (6) replaced in (3) and the equation of the movement during 
impact, ( 0)(1 =+ tFM δ ) we get: 
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where M1 is the mass of the apple. 

If in the equation (6) we replace the restitution coefficient for impact k in equation (7), 
after calculating we get:  
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Usually Vi < 1 m/s and considering that α < 1, results that 12 <<iVα , which permits, at 
the first approximation, the lapse of the value of α2Vi în eq.(10), and we get: 

 

 ααβ ckK
2
3

2
3 =≅  (11) 

 
where kc - contact rigidity of apple at impact with a rigid plane surface 

Based on elastic contact Hertz theory, result, [3,9]: 
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where E – elasticity modulus, υ – Poisson coefficient, d – apple diameter 

This way the movement equation (8) and the impact force equation (9) during impact 
become: 
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This is how the Hunt and Crosley equations have been calculated, [13]. In our research, 

[19,20] we demonstrated by integrating the two types of equations (8), (9), respectively 
(13), (14) using data collected during our own experiments on apples and obtaining 
insignificantly different results.  

There for in our numerical simulation we will use the form of eq. like (13), (14).  
Integrating equation (13), results the variance of the strain during impact dependent of 

time, and using the equation (14), results the variation of the impact force dependent of 
time F(t) and the variation of the force depending on the strain, F(δ), representing the 
curves force - time or force – strain during impact. Using these curves we can appreciate 
the characteristics of the impact and we will use in this paper only Fmax,  

The differential equation was integrated using the Runge-Kutta method using a Turbo-
Pascal [14] application conceived by the authors, with the data obtained were graphically 
displayed the force variation F, during impact depeding, on time. 

The model can be adjusted to simulate the behavior (reaction) to impact for apples as 
viscoelastic materials, and the simulation results obtained were compared with the results 
found by us, in the experiments.  
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This is the model created by Hunt and Crossley and it can be used to simulate the energy 
loss during impact between a rigid body and an elastic hemispace (the apple). For this 
reason the model can be adjusted to simulate the behavior during impact for apples, 
considering the fruits as viscoleastic materials, and at low impact velocity the contact 
surface behaves as an elastic hemispace. 

Due to the natural variation of the parameters E, α, kc, Vi, M1 that change the values of 
the coefficients in the mathematical models for the fruits impact (linear viscoelastic bodies) 
expressed in the equations (13) and (14) for simulating the impact all circumstances from 
our experiments were considered  

MATERIALS AND METHODS  

During experiments we used 3 varieties of local apples, fresh: Jonathan, Idared and 
Golden Delicious. 

We created groups of 9 apples for each of the 4 impact velocities and respectively for 
each variety of apples, using 36 apples for each variety. The fruits have been weighted, 
measured geometric dimensions (minimum and maximum diameter, height and radius of 
curvature of the surface at the impact point) and then subjected to impact using the 
pendulum method at the initial velocities 1,04 m/s; 0,83 m/s; 0,67 m/s; respectively 0,5 m/s. 
The pendulum was provided with a carbon fiber rod length 610 mm, and with an 
accelerometer fixed on apple through an elastic connection, a signal conditioner and a data 
acquisition board were integrated and connected to a computer, and with the possibility of 
measuring the angle of the rod at launching and returning on a sector graduated from an 
indicator jointly with the rotation axis of pendulum. 

Acceleration-time curves at the impact, and the returning angle of rod after impact, 
necessary to calculate the velocity at the end of impact and for restitution coefficient, have 
been created for every single fruit. 

The experimental study of the impact of the apples with the pendulum has been realized 
using a Labview application which has a user interface that allows the configuration and 
calibration of the system, the data acquisition and primary data analysis and the 
visualization of the impact. During an initial phase the maximum force during impact has 
been determined by experiments and simulations, one of the most important parameters of 
the impact with the main role in damaging the apples. The data collected during the two 
situations has been compared in order to be used to simulate the prediction of the maximum 
impact force. 

RESULTS AND COMMENTS 

For values of the geometrical and mechanical characteristics from the domain of our 
experiments, for the Golden apples variety: Vi = 0,5…1,04 m/s; E = 1,1·106…4,5·106 Pa;  
α = 0,567…0,8 s/m, [1,3], determined the domains of variation of the coefficient  
kc = 0,3·106…1,33·106 N/m3/2 and 3/2αkc = 0,35·106…1,42·106 N/m3/2. in all these cases 
have been used apples with masses between m = 87,4…159,32g, diameters between 56 and 
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Examining the values in tab. 1 we will observed that in over 70% of cases the errors for 
the Fmax estimated values, compared to Fmax measured values is between -4,1% and +8,2%, 
and the other cases had the errors just over ± 10%. 

Has also been established that for all the 108 cases considered, the variation curves of 
the followed parameters (F(t)) were similar with the ones presented in fig. 3, for simulation, 
and like in fig. 4, for the experimental values. This fact proves that the differential 
equations (13) and (14) describe with sufficient accuracy the F force variation, during 
impact, depending on time and the values of Fmax approximate sufficiently the real values. 

These data about Fmax during impact are useful in predicting the Fmax value, required 
in design engineering activities and using specific equipment for the mechanical sorting of 
the fruits. 

CONCLUSIONS 

Starting from theoretical studies upon the impact between viscoelastic bodies on rigid 
plane surfaces (using the Kelvin – Voight model), applied on apples, a differential 
mathematical model has been elaborated which simulates the real behavior during impact. 
The solutions for these equations describe the force – time curves during impact which 
permit the obtained of Fmax, that characterize the impact and are necessary to evaluate the 
degree of damage suffered by the apples and/ or the functional and constructive parameters 
of different mechanical systems included in the operations chain: transportation, sorting, 
packaging. 
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